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Signal recovery from multichannel linear superposition using minimum of 
a priori information i.e. multichannel measurements only.

Problem:

X=AS  X∈RNxT, A∈RNxM, S∈RMxT N-number of sensors; 
M- unknown number of sources
T-number of samples/observations

Goal: find S, A and number of sources M based on X only.

Meaningful solutions are characterized by scaling and permutation
indeterminacies:

Y≅S=WX → Y ≅WAS=PΛS
A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001.
A. Cichocki, S. Amari, “Adaptive Blind Signal and Image Processing,” John Wiley, 2002.
P. Comon, C. Jutten, editors, “Handbook of Blind Source Separation,” Elsevier, 2010.

Blind Source Separation – linear static problem
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Blind Source Separation – linear static problem
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Blind Source Separation – linear dynamic problem

In many situations related to acoustics and data communications we are confronted with 
multiple signals received from a multipath mixture.

Sometimes, this is known under a popular name of cocktail-party problem.

A multipath mixture can be described by a mixing matrix whose elements are the 
individual transfer functions between a source and a sensor.

When both mixing matrix and sources are unknown the problem is referred to as the
multichannel blind deconvolution (MBD) problem.

A. Hyvarinen, J. Karhunen and E. Oja, Chapter 19 in Independent Component Analysis, J. Wiley, 2001.

A. Cichocki, S. Amari, Chapter 9 in Adaptive Blind Signal and Image Processing – Learning Algorithms and    
Applications, J. Wiley, 2002.
R. H. Lambert and C.L. Nikias, Chapter 9 in Unsupervised Adaptive Filtering – Volume I Blind Source 

Separation, S.Haykin, ed.,  J. Wiley, 2000.
S.C. Douglas and S. Haykin, Chapter 3 in Unsupervised Adaptive Filtering – Volume II Blind Deconvolution, S.

Haykin, ed., J. Wiley, 2000.
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Dynamic (convolutive) model for 2x2 system.

Blind Source Separation – linear dynamic problem
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Blind Source Separation – linear dynamic problem
Speech separation in reverberant acoustic environment. Two recorded signals 
were downloaded from Russel Lamberts’ home page: 
http://home.socal.rr.com/russdsp/ . 
Signals were sampled with 8kHz and contain male and female speakers talking 
simultaneously for 12 seconds.

http://home.socal.rr.com/russdsp/
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Blind Source Separation – linear dynamic problem
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https://www.scientificamerican.com/article.cfm?id=solving-the-cocktail-party-problem

“Computers have great trouble
deciphering voices that are speaking 
simultaneously. That may soon change..”

https://domino.research.ibm.com/comm/research_projects.nsf/pages/speechseparation.index.html 
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ICA and reticle based IR tracker

I. Kopriva, A. Peršin, Applied Optics, Vol. 38, No. 7, pp. 1115-1126, 1999.
I.Kopriva, H. Szu, A.Persin, Optics Communications, Vol. 203, Issue 3-6, pp. 197-211, 2002. 
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s *=y W x*=x A s
ICA and reticle based IR tracker
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Blind Source Separation – nonlinear static problem

Problem:

X=F(S) X∈RNxT, S∈RMxT N-number of sensors; 
M- unknown number of sources
T-number of samples/observations
F – unknown vector valued function with 
vector argument.

Goal: find S based on X only. Solution is possible without preconditions 
on the type of nonlinearity F by transforming original problem X=F(S) into 
reproducible kernel Hilbert space (RKHS) where mapped sources 
possibly become linearly separable: Φ(X)≈A Φ(S). Constraints stronger 
than statistical independence must be imposed on S.

“Nonlinear Blind Source Separation,” Chapter 18 in:, “Handbook of Blind Source Separation,” Academic 
Press, 2010, P. Comon, C. Jutten, editors.
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Blind Source Separation – nonlinear static problem
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Blind Source Separation – nonlinear static problem

I. Kopriva and A. Peršin (2009). Unsupervised decomposition of low-intensity low-dimensional multi-
spectral fluorescent images for tumour demarcation, Medical Image Analysis 13, 507-518.
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Blind Source Separation
X=AS and X=ATT-1S are equivalent for any square invertible matrix T. There 
are infinitely many pairs (A,S) satisfying linear mixture model X=AS.Constraints 
must be imposed on A and/or S in order to obtain solution of the BSS problem 
that is characterized with T=PΛ.

Independent component analysis (ICA) solves BSS problem imposing 
statistical independence and non-Gaussianity constraints on source signals sm, 
m=1,…,M.

Dependent component analysis (DCA) improves accuracy of the ICA when 
sources are not statistically independent.

Sparse component analysis (SCA) solves BSS problem imposing sparseness 
constraints on source signals. 

Nonnegative matrix factorization (NMF) solves BSS problem imposing
nonnegativity, sparseness, smoothness or constraints on source signals.
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First stage: principal component analysis (PCA) and whitening (batch and 
online). PCA is decorellation transform used in multivariate data analysis. In 
connection with ICA it is very often a useful preprocessing step used in the whitening 
transformation after which multivariate data become uncorrelated with unit variance.

Statistical independence

( ) T
1

1 ( ) ( )T

t
T t t

=
≈ ∑xxR x x

It is assumed data x is zero mean. If not this is achieved by x ← x- E{x}.
Eigendecomposition of  Rxx is obtained as

T=xxR EΛE

Where E is matrix of eigenvectors and Λ is diagonal matrix of eigenvalues of Rxx. 
Batch form of PCA/whitening transform is obtained as

1/ 2 T−= =z Vx Λ E x
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Statistical independence
Scatter plots of two uncorrelated Gaussian signals (left); two correlated signals obtained 
as linear combinations of the uncorrelated Gaussian signals (center); two signals after 
PCA transform (right). 

y=Λ-1/2ETz
z=[z1;z2]

x1=N(0,4); x2 = N(0,9) z1=x1 +  x2
z2=x1 + 2x2
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s1 s2

x1 x2

Statistical independence

x1 = 2s1 + s2
x2 = s1 + s2

y1≅s1 (?)
y2≅s2 (?)
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Statistical independence - ICA
Imagine situation in which two microphones recording weighted sums of 
the two signals emitted by the speaker and background noise. 

x1 = a11s1 +  a12s2
x2 = a21s1 +  a22s2

The problems is to estimated the speech signal (s1) and noise signal (s2) 
from observations x1 and x2. 

If mixing coefficients a11, a12, a21 and a22 are known problem would be 
solvable by simple matrix inversion.

ICA enables to estimated speech signal (s1) and noise signal (s2) without 
knowing the mixing coefficients a11, a12, a21 and a22. This is why the 
problem of recovering source signals s1 and s2 is called blind source 
separation problem.



20/113

Croatiian Mathematical Society, April, 28, 2011.
“Blind source separation: theory and applications”

Speech from noise separation
s x y

20
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source signals si(t) must be statistically independent.

source signals si(t), except one, must be non-Gaussian.

mixing matrix A must be nonsingular and full column rank.

When does ICA work !?

( )p ( )
=

=∏
N

i i
i

p ss

( ) 0 2≠ >n iC s n

−≅ 1W A
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When does ICA work !?
Ambiguities of ICA.
a) Variances (energies) of the independent components can not be 
determined. This is called scaling indeterminacy. The reason is that both s
and A being unknown any scalar multiplier in one of the sources can always be 
canceled by dividing the corresponding column of A by the same multiplier:

( )1 α
α
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑ i i ii
i

sx a

b) Order of the independent components can not be determined. This is called 
permutation indeterminacy. The reason is that components of the source 
vector s and columns of the mixing matrix A could be freely changed in such 
that 

x=AP-1Ps
where P permutation matrix, Ps is new source vector with original components 
but in different order and AP-1 is a new unknown mixing matrix.  
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When does ICA work !?
Whitening is only half of the ICA. Whitening transform decorrelates signals. If 
signals are non-Gaussian it does not make them statistically independent. Whitening 
transform is useful first processing step in ICA. A second rotation stage 
achieved by an unitary matrix can be obtained by ICA exploiting non-Gaussianity of  
the signals. 

Source signals Mixed signals Whitened signals
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PCA applied to blind image separation:
When does ICA work !?

MATLAB code: Rx=cov(X’);       % estimate of the data covariance matrix
[E,D] = eig(Rx);  % eigen-decomposition of the data covariance matrix
Z = E’*X;           % PCA transform
z1=reshape(Z(1,:),P,Q); % transforming vector into image
figure(1); imagesc(z1); % show first PCA image
z2=reshape(Z(2,:),P,Q); % transforming vector into image
figure(2); imagesc(z2); % show second PCA image

z1 z2
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Histograms of source, mixed and PCA
extracted images

Source image Mixed images PCA extracted images



26/113

Croatiian Mathematical Society, April, 28, 2011.
“Blind source separation: theory and applications”

ICA for linear instantaneous models

Information theoretic ICA
Tensorial methods (Fourth order cumulants) ICA
ICA by time-delayed correlations
Applications 
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Information theoretic ICA
ICA by maximum likelihood (ML). Likelihood of the noise free ICA model x=As is 
formulated as:

D. T. Pham, “Blind separation of mixtures of independent sources through a quasimaximum likelihood approach,”
IEEE Trans. Signal Processing 45, pp. 1712-1725, 1997.

( ) det ( ) det ( )= = ∏x s i i
i

p p p sx W s W

where W=[w1 w2 … wN
]T=A-1. ML means that we want to maximize probability that data

x were observed under model x=As.  Because si=wi
Tx, px(x) can be written as:

T( ) det ( )x i i
i

p p= ∏x W w x

If this is evaluated across T observations we obtain likelihood L(W) as:

T

1 1

( ) ( ( )) det
T N

i i
t i

L p t
= =

=∏∏W w x W

Normalized log-likelihood is obtained as:

{ }T
1

1 log ( ) log ( ( )) log detN
i ii

L E p t
T =

= +∑W w x W
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Information theoretic ICA
Gradient maximization of the log-likelihood function gives:

{ }1T Tlog ( )ϕ
−∂ ⎡ ⎤∆ = = −⎣ ⎦∂

1 L E
T

W W Wx x
W

where nonlinearity ϕ(yi) is called score function and is given with
1ϕ = − i

i
i i

dp
p dy

Correcting Euclidean gradient with metric tensor WTW we get ML batch ICA algorithm:

{ }T( 1) ( ) ( ) ( )η ϕ⎡ ⎤+ = + −⎣ ⎦k k E kW W I y y W

ML adaptive ICA algorithm is obtained by dropping expectation: 
T( 1) ( ) ( ( )) ( ) ( )η ϕ⎡ ⎤+ = + −⎣ ⎦t t t t tW W I y y W

S. Amari, “Natural gradient works efficiently in learning,” Neural Computation 10(2), pp. 251-276, 1998.
J. F. Cardoso, and B. Laheld, “Equivariant adaptive source separation,” IEEE Trans. Signal Processing 44(12),
pp. 3017-3030, 1996. 
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Information theoretic ICA
The central problem is that optimal value of ϕ(y) requires knowledge of the probability 
density of the source signals:

which by definition is not known (the problem is blind).

1ϕ = − i
i

i i

dp
p dy
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Information theoretic ICA
Flexible nonlinearity concept is derived from the generalized Gaussian distribution 
model:

( )
1( ) exp

2 1

α
α

σ α α σ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟Γ ⎝ ⎠

i

i i
i n

i i i i

yp y

With the single parameter αi (called Gaussian 
exponent) super-Gaussian distributions (αi <2) 
and sub-Gaussian distributions (αi >2) could 
be modeled.

S. Choi, A. Cihcocki, S. Amari, “Flexible Independent Component Analysis,” Journal VLSI, KAP, 2000.
L. Zhang, A. Cichocki, S. Amari, “Self-adaptive Blind Source Separation Based on Activation Function  
adaptation”, IEEE Tran. On Neural Networks, vol. 15, No. 2, pp. 233-244, March, 2004.
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Information theoretic ICA
If generalized Gaussian probability density function is inserted in the optimal form for 
score function the expression for flexible nonlinearity is obtained:

1( ) ( ) αϕ −= i

i i i iy sign y y

If a priory knowledge about statistical distributions of the source signals is available αi
can be fixed in advance. This is not always impossible. For example if source signals 
are speech or music signals αi can be set to αi=1 because speech and music are super-
Gaussian signals. If source signals are various communication signals αi can be set to 
αi=2.5 or αi=3 because communication signals are sub-Gaussian signals.

Alternative way is to estimate αi adaptively from data.
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Information theoretic ICA
Score functions can be estimated from data based on estimation of the probability 
density function from using, as an example, Gaussian kernel estimator.
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S J.C. Principe, D. Xu and J.W. Fisher, “Information-Theoretic Learning,” Chapter 7 in Unsupervised 
Adaptive Filtering- Volume I Blind Source Separation, ed. S. Haykin, J. Wiley, 2000.
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Tensorial methods based ICA
Tensorial methods minimize only second and fourth order statistical dependence 
between components of y. Second order dependence is minimized by whitening 
transform z=Vx. Minimization of the fourth order statistical dependence is formulated as 
joint diagonalization problem:

( )4
ˆarg min ( , , , )= ∑∑∑∑ T

i j k l
i j k l

C y y y yW off W W

Where y=Wz and                             represents sample estimate of the FO 
crosscumulant:

4
ˆ ( , , , )i j k lC y y y y

2

ij
1 i j N

( ) a
≤ ≠ ≤

= ∑off A

4
ˆ ( , , , ) = − − −i j k l i j k l i j k l i k j l i l j kC y y y y y y y y y y y y y y y y y y y y

Algorithm is know as JADE (Joint Approximate Diagonalization of Eigen-matrices) and 
can be downloaded from:http://www.tsi.enst.fr/~cardoso/Algo/Jade/jade.m
J. F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian signals,” IEE-Proc. – F, vol. 140, 
pp. 1362-1370, 1993. 
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ICA by time-delayed correlations
When source signals have time structure i.e. their correlations and cross-correlations 
are nonzero for different time lags: 

[ ]( ) ( ) 0 for 1, 2,3,...τ τ− ≠ =i iE s t s t

it is possible to generate enough equations in order to solve the BSS problem without 
usage of  the higher order statistics. If source signals have time structure (colored 
statistics) they are even allowed to be Gaussian. If data are already whitened with 
z=Vx, it is possible to formulate symmetric one-lag covariance matrix as:

( )T1
2τ τ τ
⎡ ⎤= +⎢ ⎥⎣ ⎦

z z zC C C

L. Molgedey  and H. G. Schuster, “Separation of mixture of independent signals using time delayed correlations,”
Physical Review Letters, vol. 72, pp. 3634-3636, 1994. 
L. Tong, R.W. Liu, V.C. Soon, and Y. F. Huang, “Indeterminacy and identifiability of blind identification,” IEEE 
Trans. on Circuits and Systems, 38:499-509, 1991.
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ICA by time-delayed correlations
Symmetric one-time lag covariance matrix has the following structure (Wz=s; z=WTs):

{ } { }T T T T1 ( ) ( ) ( ) ( )
2τ ττ τ⎡ ⎤= − + − =⎣ ⎦E t t E t tz sC W s s s s W W C W

Because source signals are independent by assumption  one-time lag covariance matrix  
is diagonal matrix:

τ
sC

{ } { }T T( ) ( ) ( ) ( )τ τ τ= − + − =E t t E t tsC s s s s Λ

data covariance matrix can be written as:

T
τ =
zC W ΛW

which shows that rows of de-mixing matrix W are the eigen-vectors of the symmetrical 
one-lag data covariance matrix       . This is how BSS problems is solved by the AMUSE 
algorithm.

τ
zC
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ICA by time-delayed correlations

Approach could be extended by using multiple time lags. The ICA algorithm is 
formulated as joint diagonalization problem:

( )T( ) off τ
τ∈

= ∑
S

J zW WC W

Representative algorithms are SOBI (second order blind identification) and TDSEP.

A. Belouchrami, K.A. Meraim, J.F. Cardoso, and E. Moulines, “A blind source separation technique based on 
second order statistics,” IEEE Trans. on Signal Processing, 45(2), pp. 434-444, 1997. 
A. Ziehe, K.R. Muller, G. Nolte, B. M. Mackert, and G. Curio, “TDSEP-an efficient algorithm for blind separation 
using time structure,” Proc. ICANN’98, pp. 675-680, Skovde, Sweden, 1998.
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Scatter diagrams of PCA and ICA extracted
signals

ICA extracted signals
(min MV(y)).

Source signals PCA extracted signalsi
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PCA

ICA (min MI(y)).
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ICA and multispectral remote sensing
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Hyperspectral vs. Multispectral Remote 
sensing

SPOT- 4 bands, LANDSAT -7 bands, AVIRIS-224 bands (0.38µ-2.4µ);

Objects with very similar reflectance spectra can be discriminated.
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Hyperspectral/Multispectral 
Linear Mixing Data Model

1=
= =∑M

i ii
sx As a [ ]... ≡1 2 Ma a a A

For sensor consisting of N bands and M pixels linear data model is assumed: 

x - measured data intensity vector, x ∈ RNx1

s - unknown class vector, s ∈ R1xM

A – unknown spectral reflectance matrix nonsingulairty condition implies ai≠aj. A ∈ RNxN

Unknown endmembers si are can be recovered by ICA based de-mixing:

ˆ =s Wx
Statistical independence assumption between sources (classes) fails when they 
become spectrally similar. Thus, ICA will be less accurate for low-dimensional 
multispectral image than for high-dimensional hyperspectral image.
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ICA and unsupervised classification of the hyperspectral
image

Q. Du, I. Kopriva and  H. Szu, “ Independent Component Analysis for Hyperspectral Remote Sensing Imagery 
Classification,” Optical Engineering, vol. 45, 017008, January 2006.
Q. Du, I. Kopriva, “Automated Target Detection and Discrimination Using Constrained Kurtosis Maximization,”
IEEE Geoscience Remote Sensing Letters, vol. 5, No. 1, pp. 38-42, 2008. 

HYDICE Panel scene (a) that contains 15 panels in 5x3 matrix. Image is collected 
in Maryland in 1995 from the flight altitude of 10000 feet with approximately 1.5m 
spatial resolution. 

Original HYDICE image had 210 channels with spectral coverage 0.4-2.5µm. After 
removing atmospheric bands with low SNR number of bands was reduced to 169.

In each row panels are made from the same material but differ in size 
that varies as 3x3m 2x2m and 1x1m.
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With noise adjusted PCA algorithm for dimensionality reduction and JADE ICA 
algorithm for image classification all five  panel classes have been correctly 
classified with only 30 principal components in image representation. 

43
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ICA and fMRI signal processing
Separating fMRI data into independent spatial 

components involves determining three-dimensional
brain maps and their associated time courses 
of activation that together sum up to the 
observed fMRI data.

The primary assumption is that the component maps, 
specified by fixed spatial distributions of values
(one for each brain voxel), are spatially independent.

This is equivalent to saying that voxel values in any one 
map do not convey any information about the voxel
values in any of the other maps. 

With these assumptions, fMRI signals recorded from
one or more sessions can be separated by the ICA 
algorithm into a number of independent component 
maps with unique associated time  courses of activation.

McKeown, et. al, “Analysis of fMRI Data by Blind Separation Into Independent Spatial Components,” Human Brain Mapping 6: 160-
188 (1998).
M. J. McKewon, et. al, Spatially independent activity patterns in functional MRI data during the Stroop color-naming task,” Proc. 
Natl. Acad. Sci, USA, Vol. 95, pp.803-810, February 1998.
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ICA and fMRI signal processing
The matrix of component map values can be computed by multiplying the observed 

data by the ICA learned de-mixing matrix W.
1

N

ij ik kj
k

C W X
=

= ∑

Where X is the NxM matrix of fMRI signal data
(N, the number of time point in the trial, and M,
the number of brain voxels and Cij is the value of the jth 
voxel of the ith component.
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46

ICA and fMRI signal processing

ICA has been successfully used to distinguish between 
task related and non-task related signal components.
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ICA and image sharpening in the atmospheric 
turbulence

Random fluctuations of the refractive index in space and time along the 
atmospheric path will degrade performance of the imaging system much 
beyond the classical Rayleigh’s diffraction limit.

Intensity in the image plane at time point tk can be approximated as linear 
superposition of the Intensities of the original image and sources of turbulence 
placed at reference time t0. 

0 0
1

( , , ) ( ) ( , , )
=

= ∆∑
N

ik k kn kn n
n

I t x y a t I t x y

I.Kopriva, et al., Optics Communications, Vol. 233, Issue 1-3, pp.7-14, 2004.
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ICA representation of the image sequence

( , ) ( , ) ( , )ν= +i x y x y x yoI AI
Image cube for multispectral imaging Image cube for video sequence

ω ⇔ t
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Experimental results

Three randomly selected frames with 
nonzero mutual information 
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Cany’s method of edge extraction gives 
the best result for the ICA recovered 
object image. 

Important to reduce the false alarm rate in 
automatic target recognition (ATR).
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Dependent component analysis
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Increasing statistical independence

• We want to find a linear operator T with the property that T(sm) and 
T(sn) are more independent than sm and sn∀m, n.

•Then, W≅A-1 is learnt by applying ICA on T(x)=AT(s). 

• How to find linear operator T ?
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Increasing statistical independence

•Sub-band decomposition ICA (SDICA): wideband source signals are 
dependent, but there exist sub-bands where they are less dependent.

•Innovations-based approach.

A. Cichocki, P. Georgiev, Blind source separation algorithms with matrix xonstraints, IEICE Trans. Fund. Electron. 
Commun. Comput. Sci. E86-A (2003) 522-531.
T. Tanaka, A. Cichocki, Subband decomposition independent component analysis and new performance criteria, 
Proc. ICASSP, 2004.
I. Kopriva, D. Sersic, Wavelet packets approach to blind separation of statistically dependent sources,
Neurocomputing 71,1642-1655 (2008).
I. Kopriva, D. Sersic, Robust blind separation of statistically dependent sources using dual tree wavelets, ICIP 
2007.
A. Hyvarinnen, Independent component analysis for time-dependent stochastic processes, ICANN’98, Skvode, 
Sweden, 1998.
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Increasing statistical independence: innovations-based 
approach

•Argument for using innovations (prediction errors) is that they are more 
independent from each other and more non-Gaussian than original 
processes essentially important for the success of the ICA 
algorithms. 

•Innovations:

( ) ( ) [ ( ) ( 1), ( 2),...]

( ) [ ( ) ( 1), ( 2),...]

( ) [ ( ) ( 1), ( 2),...]

( )

t t E t t t

t E t t t

t E t t t

t

= − − −

= − − −

⎡ ⎤= − − −⎣ ⎦
=

x x x x x

As As As As

A s s s s

As

( ) ( ) ( ) ( 1), ( 2),...m m m m ms t s t E s t s t s t⎡ ⎤= − − −⎣ ⎦
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Increasing statistical independence: innovations-based 
approach

•Innovation is realized through prediction error filtering:

1
( ) ( ) ( ) ( )

K

n n n n
k

x t x t h k x t K
=

= − −∑

hn is learned for each xn separately. Final prediction error filter is 
obtained as an average:

1

1

N

nN
n=

= ∑h h

•Linear time invariant prediction error filter is efficiently estimated from 
data by means of Levinson algorithm (MATLAB command lpc). Thus, 
innovations actually are data adaptive high-pass filtering.
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Increasing statistical independence: innovations-based 
approach

•Innovations are data adaptive high-pass filtering due to the fact that 
linear prediction error filter removes slow varying (predictable) part of 
the signal. Thus, through innovations a low frequency part of the 
spectrum is removed.

•In this regard even fixed high pass filters are efficient in enhancing 
statistical independence between the source signals. 

•The first order high pass filter h=[1 –1] is very useful in various image 
processing problems. 
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Increasing statistical independence: SDICA approach

• In SDICA approach the operator T represents prefilter applied to all 
observed signals.

• The wideband source signals are dependent, but some of their 
subcomponents are independent.

•The challenge is how to find a subband index 1≤k≤L, such that sk
contains least dependent subcomponents?

1
( ) ( )L

ll
t t

=
=∑s s
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Increasing statistical independence: SDICA approach

• To locate sub-band with least dependent components small cumulant
based approximation is used to measure the mutual information 
between the components of the measured signals in the corresponding 
nodes of the wavelet trees.

where j represents scale index and k represents sub-band index at the 
appropriate scale.

( ) ( )

( )

2 2 2
1 2

0 0

2 2 2

0
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4 12

1 ( , , , ) ( , , , ) ( , , , )
48
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I. Kopriva, D. Sersic, Wavelet packets approach to blind separation of statistically dependent sources,
Neurocomputing 71, 1642-1655 (2008).
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Increasing statistical independence: SDICA approach

59

Mutiscale analysis SDICA

( )1* arg min ,...,k k
N

k
k I x x=

( )kICA≅W x

≅s Wx
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Separation of images of human faces

• Wavelet packets approach to blind separation of statistically dependent 
sources is tested on separation of the images of human faces. They are known 
to be highly dependent i.e. people are quite similar (statistically).

• Background Gaussian noise has been added as wide-band interferer to all 
source images with an average SNR ≅30dB.
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Robust demarcation of the basal cell carcinoma

I. Kopriva, A. Peršin, N. Puizina-Ivić, L. Mirić (2010). Robust demarcation of basal cell carcinoma by 
dependent component analysis-based segmentation of multi-spectral fluorescence image, Journal 
Photochemistry and Photobiology B: Biology, vol. 100, pp. 10-18
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Robust demarcation of the basal cell carcinoma

Evolution curve after 700 iterations 
on gray scale image of the tumor.
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Robust demarcation of the basal cell carcinoma
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Underdetermined blind source separation:Underdetermined blind source separation:

sparse component analysis (SCA) sparse component analysis (SCA) 

andand

nonnegative matrix factorization (NMF)nonnegative matrix factorization (NMF)
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Underdetermined BSS
•uBSS occurs when number of measurements N is less than number of 
sources M. Resulting system of linear equations 

x=As

is underdetermined. Without constraints on s unique solution does not 
exist even if A is known:

s=sp + sh = A†x + Vz    AVz=0

where V spans null-space of A that is M-N dimensional.

• However, if s is sparse enough A can be identified and unique solution 
for s can be obtained. This is known as sparse component analysis 
(SCA).
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Underdetermined BSS
Provided that prior on s(t) is Laplacian, maximum likelihood approach to 
maximization of posterior probability P(slx,A) yields minimum L1-norm as the 
solution: ( )

( ) ( )

( )

( )

ˆ ( ) ( )

ˆ ( ) ( )

ˆ ( ) ( )

1ˆ ( ) ( )

1ˆ ( ) ( )
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uBSS – L1 norm minimization

SCA-based solution of the uBSS problem is obtained in two stages: 

- estimate basis or mixing matrix A using data clustering.

- estimate sources s solving underdetermined linear system of        
equations x=As. Provided that s is sparse enough, solution is obtained      
at the minimum of L1-norm. Due to convexity L1-norm is used as a   
replacement for L0-quasi-norm. 

- accuracy of the estimation of the mixing matrix A can be improved  
significantly when it is estimated on a set of single component points i.e.   
points where only one component/source is present.
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uBSS – L1 norm minimization
- at the points t of single source activity the following relation holds:

where j denotes the source index that is present at point t. At these   
points the mixing vector aj is collinear with data vector xt . 

- it is assumed that data vector and source components are complex. If not, 
Hilbert transform-based analytical expansion can be used to obtain 
complex representation.
- if single source points can not be found in original domain a linear 
transform such as wavelet transform, Fourier transform or Short-time 
Fourier transform can be used to obtain sparse representation:

xt=ajsjt

T(x)t=aj T(sj)t

69
I.Kopriva, I. Jerić, “Blind separation of analytes in nuclear magnetic resonance spectroscopy and mass 
spectrometry: sparseness-based robust multicomponent analysis,“ Analytical Chemistry 82: 1911-1920 (2010).
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uBSS – L1 norm minimization
- since the mixing vector is real the real and imaginary part of data vector
xt must point in the same direction when real and imaginary part of sjt
have the same sign. Otherwise, they must point into opposite directions.  

Thus, such points can be identified using:

where R{xt} and I{xt} denote real and imaginary part of xt, and ∆θ denotes 
angular displacement from a direction of 0 or π radians.

{ } { }
{ } { } ( )

T

cost t

t t

R I
R I

θ≥ ∆
x x
x x

V.G. Reju, S.N. Koh, I. Y. Soon, “An algorithm for mixing matrix estimation in instantaneous blind source 
separation," Signal Processing 89, 1762-1773 (2009).

S.G. Kim, C.D. Yoo, “Underdetermined Blind Source Separation Based on Subspace Representation," IEEE 
Trans. Signal Processing 57, 2604-2614 (2009).
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- several methods to solve underdetermined linear system of equations 
are linear programming:

( )
ˆ

1
( )

ˆˆ( ) arg min s.t. ( ) ( ) 1,...,

s.t.  ( ) 0

M
mm

t
t s t t t t T

t

=
= = ∀ =

≥

∑
s

s As x

s

uBSS – L1 norm minimization

L1-regularized least square problem:

and L2-regularized linear problem:

2

12( )

1 ˆˆ( ) arg min ( ) ( ) ( ) 1,...,
2t

t t t t t Tλ= − + ∀ =
s

s As x s
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1 2( )

ˆˆ( ) arg min ( ) s.t. ( ) ( ) 1,...,
t

t t t t t Tε= − ≤ ∀ =
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S.J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, "An Interior-Point Method for Large-Scale -Regularized 
Least Squares,"IEEE Journal of Selected Topics in Signal Processing 1, 606-617 (2007). 
E. van den Berg, M.P. Friedlander, “Probing the Pareto Frontier for Basis Pursuit Solutions,” SIAM J. Sci.
Comput. 31, 890-912 (2008).
M.A.T. Figuiredo, R.D. Nowak, S.J. Wright, "Gradient Projection for Sparse Reconstruction: Application to 
Compressed Sensing and Other Inverse Problems," IEEE Journal on Selected Topics in Signal Processing 1, 
586-597 (2007).
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uBSS – clustering
Assuming unit L2-norm of am and N=2 we can parameterize column vectors in 
a plane by one angle  

T[cos( ) sin( )]m m mϕ ϕ=a

Assuming that s is 1-sparse in representation domain estimation of A and M is 
obtained by data clustering algorithms. 

•We remove all data points close to the origin for which applies:
where ε represents some predefined threshold.

{ }2 1
( )

T

t
t ε

=
≤x

•Normalize to unit L2-norm remaining data points x(t), i.e.,                      ,            ( ) ( ) ( ){ }2 1

T

t
t t t

=
→x x x

F.M. Naini, G.H. Mohimani, M. Babaie-Zadeh, Ch. Jutten, "Estimating the mixing matrix in Sparse Component
Analysis (SCA) based on partial k-dimensional subspace clustering," Neurocomputing 71, 2330-2343 (2008).
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uBSS – clustering
• Calculate function f(a): 

( ) ( )2

2
1

( ),
exp

2

T

t

d t
f

σ=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑

x a
a

Where                                      and              denotes inner product. Parameter σ
is called dispersion. If set to sufficiently small value the value of the function f(a) 
will approximately equal the number of data points close to a. Thus by varying 
mixing angle ϕ we effectively cluster data. 

( ) ( )2( ), 1 ( )d t t= − ⋅x a x a ( )( )t ⋅x a

• Number of peaks of the function f(a) corresponds with the estimated number 
of materials M. Locations of the peaks correspond with the estimates of the 
mixing angles              , i.e., mixing vectors            .( ){ }

ˆ

1
ˆ M

m m
ϕ

= { }
ˆ

1
ˆ M

m m=
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Blind separation of four sine signals from two mixtures

74

Four sinusoidal 
signals with 
frequencies 200Hz, 
400Hz, 800Hz and 
1600Hz.

TIME DOMAIN
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Blind separation of four sine signals from two mixtures

75

Four sinusoidal signals 
with frequencies 200Hz, 
400Hz, 800Hz and 
1600Hz.

FREQUENCY DOMAIN
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Blind separation of four sine signals from two mixtures
Two mixed signals

TIME DOMAIN FREQUENCY DOMAIN
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Blind separation of four sine signals from two mixtures
Clustering function

A=[63.440 26.570 14.040 71.570]

AH=[14.030 26.550 63.260 71.550]
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Blind separation of four sine signals from two mixtures

Linear programming based estimation of the sources using estimated 
mixing matrix A

( ) ( )
( ) ( )

r r

i i

ω ω
ω ω

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

x sA 0
x s0 A

or:

( ) ( )ω ω=x As
sr(ω) and si(ω) are not necessarily nonnegative. Thus, constraint ( )ω ≥s 0
required by linear program is not satisfied. In such a case it is customary to
introduce dummy variables: u,v≥0, such that                          .( )ω = −s u v
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Blind separation of four sine signals from two mixtures

Introducing:

( )ω ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

u
z

v
⎡ ⎤= −⎣ ⎦A A A

yields:
4
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( )ωs ˆ( )ωzWe obtain             from            as: 
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Blind separation of four sine signals from two mixtures

Magnitudes of the estimated sources in FREQUENCY DOMAIN
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Blind separation of four sine signals from two mixtures

Estimated sources in TIME DOMAIN
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Blind separation of three sounds from 
two mixtures
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Blind separation of three sounds from two mixtures
Three source signals are female and male voice and bird’s sound:

Time-frequency representationsTime domain waveforms
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Blind separation of three sounds from two mixtures

Two mixtures of sounds:

Time domain waveforms Time-frequency representations
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Blind separation of three sounds from two mixtures
Three extracted sounds combining clustering on a set of single source points 
and linear programming in time-frequency domain:

Time-frequency representationsTime domain waveforms
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Blind extraction of analytes (pure 
components) from mixtures of chemical 

compounds

I. Kopriva, I. Jerić (2010). Blind separation of analytes in nuclear magnetic resonance spectroscopy and mass
spectrometry: sparseness-based robust multicomponent analysis, Analytical Chemistry 82:1911-1920.
I. Kopriva, I. Jerić, V. Smrečki (2009). Extraction of multiple pure component 1H and 13C NMR spectra from 
two mixtures: novel solution obtained by sparse component analysis-based blind decomposition, Analytica 
Chimica Acta, vol. 653, pp. 143-153.
I. Kopriva, I. Jerić (2009). Multi-component Analysis: Blind Extraction of Pure Components Mass Spectra 
using Sparse Component Analysis, Journal of Mass Spectrometry, vol. 44, issue 9, pp. 1378-1388.
I. Kopriva, I. Jerić, A. Cichocki (2009). Blind Decomposition of Infrared Spectra Using Flexible Component 
Analysis," Chemometrics and Intelligent Laboratory Systems 97.
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Chemical structure of five pure components.
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Mass spectra of five pure components.
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Mass spectra of two mixtures
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Dana clustering function in the mixing anagle domain. Five peaks indicate presence of five 
components in the mixtures spectra.
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Estimated mass spectra of five pure components.
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Nonnegative matrix factorization (NMF)
NMF algorithms solve blind decomposition problem

where N represents number of sensors, M represents number of sources and T 
represents number of samples. 

N×T N×M M×T
0+ 0+ 0+, and= ∈ ∈ ∈X AS X A S

D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature 401 (6755), 788-791 (1999). 

A. Cichocki, R. Zdunek, and S. Amari, “Csiszár’s Divergences for Non-negative Matrix Factorization: Family of New Algorithms,”
LNCS 3889, 32-39 (2006).
R. Zdunek, A. Cichocki, Nonnegative matrix factorization with constrained second order optimization, Signal Proc. 87 (2007) 1904-
1916.
A. Cichocki, R. Zdunek, S.I. Amari, Hierarchical ALS Algorithms for Nonnegative Matrix Factorization and 3D Tensor Factorization, 
LNCS 4666 (2007) 169-176
A. Cichocki, A-H. Phan, R. Zdunek, and L.-Q. Zhang, "Flexible component analysis for sparse, smooth, nonnegative coding or 
representation," LNCS 4984, 811-820 (2008).
A. Cichocki, R. Zdunek, S. Amari, Nonnegative Matrix and Tensor Factorization, IEEE Sig. Proc. Mag. 25 (2008) 142-145. A.
Cichocki, and R. Zdunek, “Multilayer Nonnegative Matrix Factorization,” El. Letters 42, 947-948 (2006).
A. Cichocki, R. Zdunek, A. H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations-Applications to Exploratory Multi-way 
Data Analysis and Blind Source Separation, John Wiley, 2009.
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Nonnegative matrix factorization
Modern approaches to NMF problems have been initiated by Lee-Seung Nature 
paper, Ref. 83, where it is proposed to estimate A and S through alternative 
minimization procedure of the possibly two different cost functions: 

Set Randomly initialize: A(0), S(0),

For k=1,2,…, until convergence do

Step 1:

Step 2:

( ) ( )

( 1) ( )

0
arg min

k
mt

k k

s
D+

≥
= s S

S X A S

( ) ( )

( 1) ( 1)

0
arg min

k
nm

k k

a
D+ +

≥
= A A

A X AS

If both cost functions represent squared Euclidean distance (Froebenius norm) 
we obtain alternating least square (ALS) approach to NMF.
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Nonnegative matrix factorization
Without additional constraints original Lee-Seung NMF algorithm does not yield 
unique solution. Generalization that involves sparseness constraints is given in:

( ) 2

2

1 ( ) ( )
2

D J Jα α= − + +S S A AX AS X AS S A

where                        and                         are sparseness constraints. αS and αA
are regularization terms. Gradient components in matrix form are

,
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m t
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,
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J a=∑A A

( ) T T, ( )
nm

nm nm

D J
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s s

α
∂ ∂⎡ ⎤= − + +⎣ ⎦∂ ∂
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Nonnegative matrix factorization
By choosing learning rates proposed by Lee and Seung (they ensure
nonnegativity) 

T
nm

nm

nm

aη =
⎡ ⎤⎣ ⎦ASS T

mt
mt

mt

sη =
⎡ ⎤⎣ ⎦A AS

Multiplicative learning rules are obtained 

T

T

( )
nm

nm
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where [x]+=max{ε,x} with small ε. In a case of sparseness constraints 
derivatives in above expressions are equal to 1.
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Nonnegative matrix factorization
NMF through minimization of Froebenius norm is optimal when data are 
corrupted by additive Gaussian noise. Squared Euclidean norm-based cost 
function is equivalent to maximization of likelihood:

( )
2

2
2

1, exp
22

p
σπσ

⎛ ⎞−
⎜ ⎟= −
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⎝ ⎠

X AS
X A S

Another cost function that is used most often for NMF is Kullback-Leibler
divergence, also called I-divergence

( ) [ ] [ ]ln nt
nt nt nt

nt nt

xD x x
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

∑X AS AS
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It can be shown that minimization of Kullback-Leibler divergence is equivalent 
to the maximization of the Poisson likelihood
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Nonnegative matrix factorization
Calculating gradients of I-divergence cost function w.r.t. anm and smt the 
following learning rules in MATLAB notation are obtained

( )( )( )
.[1 ].[ ]

( 1) ( ) T ( )k k k
αω +

+ ⎛ ⎞= ⊗ ∅⎜ ⎟
⎝ ⎠

S

S S A X AS

( )( )( )
.[1 ].[ ]

( 1) ( ) ( ) Tk k k
αω +

+ ⎛ ⎞= ⊗ ∅⎜ ⎟
⎝ ⎠

A

A A X A S S

where ⊗ denotes component-wise multiplication, and ∅ denotes component-
wise division. Relaxation parameter ω∈(0,2] provides improvement of the 
convergence, while αS≥0 and αA≥0 are sparseness constraints that are typically 
confined in the interval [0.001, 0.005].
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Nonnegative matrix factorization
In order to obtain NMF algorithms optimal for different statistics of data and 
noise the α-divergence cost function can be used

( ) [ ] [ ]( )11 ( 1)
( 1) nt ntnt nt

nt
D x xαα α α

α α
−= − + −

− ∑X AS AS AS

I-divergence is obtained in the limit when α 1 and dual Kullback-Leibler
divergence when α 0. Using MATLAB notation the following update rules are 
obtained for α≠0,1.
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+
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T

. . .
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+

+
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Hierarchical  ALS NMF
Local or hierarchical ALS NMF algorithms were recently derived. They are 
biologically plausible and employ minimization of the global cost function to 
learn the mixing matrix and minimization of set of local cost functions to learn 
the sources. Global cost function can for example be squared Euclidean norm:

( ) 2

2

1 ( ) ( )
2

D J Jα α= − + +S S A AX AS X AS S A

Local cost functions can be also squared Euclidean norms

( ) 2( ) ( ) ( ) ( ) ( )

2

1 ( ) ( ) 1,...,
2

m m m m m
m m m m m mD J J m Mα α= − + + =s S a aX a s X a s s a

( )m
j j

j m≠
= −∑X X a s
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Hierarchical  ALS NMF

Minimization of above cost functions in ALS manner with sparseness 
constraints imposed on A and/or S yields

{ }T ( ) ( )
1 1

M
m m

m m T m
α × + =

⎡ ⎤← −⎣ ⎦ss a X 1

( )( ) 1T
N M Mα λ

−

×
+

⎡ ⎤← − +⎢ ⎥⎣ ⎦
T

AA XS 1 SS I

{ }2 1

M

m m m m=
←a a a

where I1×T is an M×M identity matrix, 11×T and 1N×M are row vector and matrix 
with all entries equal to one and [ξ]+=max{ε,ξ} (e.g., ε=10-16). 

Regularization constant λ changes as a function of the iteration 
index as (with λ0 = 100 and τ = 0.02 in the experiments). ( )0 expk kλ λ τ= −



102/113

Croatiian Mathematical Society, April, 28, 2011.
“Blind source separation: theory and applications”

Multilayer NMF
Significant improvement in the performance of the NMF algorithms is obtained 
when they are applied in the multilayer mode, whereas sequential
decomposition of the nonnegative matrices is performed as follows. 

In the first layer, the basic approximation decomposition is performed: 

In the second layer result from the first layer is used to build up new input data 
matrix for the second layer                        . This yields . 

After L layers data decomposes as follows 

(1) (1)
0
N T×
+≅ ∈X A S

(1)
0
M T×
+← ∈X S (1) (2) (2)

0
M T×
+≅ ∈X A S

(1) (2) ( ) ( )L L≅X A A A S
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Multi-start initialization for NMF algorithms
Combined optimization of the cost function D(XΙΙAS) with respect to A
and S is nonconvex optimization problem. Hence, some strategy is 
necessary to decrease probability that optimization process will get stuck 
in some local minima. Such procedure is outlined with the following 
pseudo code: Select R-number of restarts, Ki number of alternating 
steps, Kf number of final alternating steps.

for r =1,…,R do

Initialize randomly A(0) and S(0)

{A(r),S(r)} nmf_algorithm(X,A(0),S(0),Ki);

compute d=D(XΙΙA(r)S(r));

end

rmin=argmin1≤n≤Rdr;

{A,S} nmf_algorithm(X,A(rmin),S(rmin),Kf);
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Unsupervised segmentation of multispectral images

SPOT- 4 bands, LANDSAT -7 bands, AVIRIS-224 bands (0.38µ-2.4µ);

Objects with very similar reflectance spectra are difficult to discriminate.
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Unsupervised segmentation of multispectral images
Hyperspectral/multispectral image and static linear mixture model. For image 
consisting of N bands and M materials linear data model is assumed: 

1

M
m mm=

= =∑X AS a s

[ ]...1 2 M ≡a a a A

X - measured data intensity matrix,

[ ]... T
1 2 M ≡s s s S

0
N T×
+∈X

0
M T×
+∈SS - unknown class matrix,

0
N M×
+∈AA – unknown spectral reflectance matrix.
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Unsupervised segmentation of multispectral images

Spectral similarity between the sources sm and sn implies that 
corresponding column vectors are close to collinear i.e. am≅can.

Contribution at certain pixel location t is: amsmt + ansnt ≅ cansmt + ansnt. 
This implies that sn and csm are indistinguishable i.e. they are 
statistically dependent. 

Thus, spectral similarity between the sources causes ill-conditioning 
problems of the basis matrix as well as statistical dependence among 
the sources. Both conditions imposed by ICA algorithm on SLMM 
are not satisfied. 
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Unsupervised segmentation of RGB image with four 
materials

Consider blind decomposition of the RGB image (N=3) composed of four 
materials (M=4): 

I. Kopriva and A . Cichocki, “Sparse component analysis-based non-probabilistic blind decomposition of low-dimensional multi-
spectral images,” Journal of Chemometrics, vol. 23, Issue 11, pp. 590-597 (2009). 
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Unsupervised segmentation of multispectral images

Evidently degree of overlap between materials in spatial domain is very small
i.e. sm(t)*sn(t)≈δnm.. Hence RGB image decomposition problem can be 
solved either with clustering and L1-norm minimization or with HALS NMF 
algorithm with sparseness constraints. 

For the L1-norm minimization estimate of the mixing (spectral reflectance 
matrix) A and number of materials M is necessary. For HALS NMF only 
estimate of M is necessary. Both tasks can be accomplished by data clustering
algorithm].

Since materials in do not overlap in spatial domain it applies ||s(t) ||0≈1.
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Unsupervised segmentation of multispectral images

Assuming unit L2-norm of am we can parameterize column vectors in 3D space 
by means of azimuth and elevation angles  

T[cos( )sin( ) sin( )sin( ) cos( )]m m m m m mϕ θ ϕ θ θ=a

Due to nonnegativity constraints both angles are confined in [0,π/2]. Now 
estimation of A and M is obtained by means of data clustering algorithm: 

•We remove all data points close to the origin for which applies:
where ε represents some predefined threshold.

{ }2 1
( )

T

t
t ε

=
≤x

•Normalize to unit L2-norm remaining data points x(t), i.e.,                      ,            ( ) ( ) ( ){ }2 1

T

t
t t t

=
→x x x
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Unsupervised segmentation of multispectral images

• Calculate function f(a): 

( ) ( )2

2
1

( ),
exp

2
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t

d t
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where                               and               denotes inner product. Parameter σ is 
called dispersion. If set to sufficiently small value, in our experiments this turned 
out to be σ≈0.05, the value of the function f(a) will approximately equal the 
number of data points close to a. Thus by varying mixing angles 0≤ϕ,θ≤π/2 we 
effectively cluster data. 

( ) ( )2( ), 1 ( )d t t= − ⋅x a x a ( )( )t ⋅x a

• Number of peaks of the function f(a) corresponds with the estimated number 
of materials M. Locations of the peaks correspond with the estimates of the 
mixing angles                   , i.e., mixing vectors         .( ){ }
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m m
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ϕ θ
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ˆ
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Unsupervised segmentation of multispectral images
For shown experimental RGB image clustering function is obtained as: 

Four peaks suggest existence of four materials in the RGB image i.e. M=4.
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Unsupervised segmentation of multispectral images
Spatial maps of the materials extracted by HALS NMF with 25 layers, linear 
programming and interior point method are obtained as:

a) 25 layers HALS NMF; b) Interior point method; c) Linear programming.
S.J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, "An Interior-Point Method for Large-Scale  L1 -Regularized 
Least Squares,"IEEE Journal of Selected Topics in Signal Processing 1, 606-617 (2007).
http://www.stanford.edu/~boyd/l1_ls/.
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Unsupervised segmentation of multispectral images
Correlation matrices

From left to right: 25 layers HALS NMF; Interior point method, [74,90]; c) Linear programming.

CR performance measure in dB
Multilayer HALS NMF Interior-point method Linear program

CR [dB] 13.67 9.97 7.77

CPU time [s]* 3097 7751 3265

*MATLAB environment on 2.4 GHz Intel Core 2 Quad Processor Q6600 desktop computer with 4GB RAM.
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